
PRISM: Parameter-optimized Realtime
Intelligent Stem Mastering

Consistent Low-Distortion Limiting via
Differentiable Stem-Aware Optimization

Andrew Grathwohl
andrew@grathwohl.me

github.com/agrathwohl/hyraxiable

February 2026

Abstract

We present PRISM (Parameter-optimized Real-
time Intelligent Stem Mastering), a fully differ-
entiable audio compressor/limiter implemented in
Rust with PyTorch bindings. PRISM computes
exact analytical Jacobians through every stage of
the limiting signal chain—including peak detec-
tion, soft-knee gain computation, and recursive
IIR smoothing—in a single forward pass. Our
central finding is that intermodulation distortion
(IMD) is the correct optimization target for dif-
ferentiable dynamics processing. By minimizing
IMD as the primary loss, a gradient-based opti-
mizer autonomously discovers musically meaning-
ful parameter configurations—including frequency-
aware sidechain shaping, transient attenuation, and
harmonic preservation—without being given any
information about the audio content. We further
introduce a two-phase staged optimization with con-
figurable Phase 1 targeting (LUFS or peak track-
ing) that freezes per-stem gains during an initial
dynamics-fitting phase, then unfreezes them for
IMD refinement, with analytical post-optimization
makeup gain to guarantee peak ceiling compliance.
We validate at scale on 255 matched track/target
pairs from the MUSDB18-HQ dataset against dpl,
a conventional true-peak limiter. PRISM achieves
lower IMD on 80% of tracks, with a median improve-
ment of 9.1 dB. Beyond raw quality, PRISM demon-
strates dramatically higher consistency: standard
deviation of 6.9 dB versus 19.8 dB for conventional
limiting. This consistency—reliable, predictable re-
sults across diverse source material—is the practical

contribution: stem-aware optimization eliminates
the unpredictability of conventional limiting. Spec-
tral analysis confirms clean limiting behavior with
no added harmonics or spectral coloration. PRISM
processes 44,100 samples across 8 stems with full
Jacobian computation in 3.2 ms on CPU.

1 Introduction

Audio dynamic range compression and limiting are
fundamental to music production, broadcast, and
streaming delivery. A limiter attenuates signals
exceeding a threshold to prevent clipping, but in-
troduces nonlinear distortion—particularly inter-
modulation distortion (IMD)—that degrades audio
quality. Configuring limiter parameters (threshold,
attack/release timing, compression ratio, per-stem
gains) traditionally requires manual tuning by ex-
perienced mastering engineers.

Recent advances in differentiable audio signal pro-
cessing [1, 2, 3] have shown that placing audio effects
inside gradient-based optimization loops can yield
parameter configurations that outperform manual
tuning. However, existing approaches to differen-
tiable dynamics processing face two fundamental
challenges:

1. Technical: Limiters contain operations that are
discontinuous (max(), threshold comparisons)
or stateful (recursive IIR filters), making stan-
dard autograd either incorrect or expensive.

2. Conceptual: The choice of optimization target
determines whether the optimizer converges to
a musically useful solution or a degenerate one.

1

Output-oriented metrics (loudness, peak level)
are constraints, not objectives.

We address the first challenge by computing ana-
lytical gradients through every limiter component,
and the second by demonstrating that intermodu-
lation distortion is the correct loss function. IMD
measures the nonlinear distortion a limiter intro-
duces into the spectral relationships between stems.
By minimizing IMD, the optimizer discovers the en-
gineering principles that mastering engineers learn
over years of practice—without being told what the
audio contains.

1.1 Why Output Metrics Fail

The natural assumption for a limiter optimizer is to
target output characteristics: hit a LUFS loudness
target, stay under a peak ceiling. But these are
boundary conditions, not quality metrics. A limiter
can trivially satisfy loudness and peak targets while
introducing severe intermodulation artifacts.

IMD captures how much the limiter damages the
signal. When the optimizer minimizes IMD, it must
find parameter configurations where the limiter’s
nonlinear behavior causes minimal spectral interfer-
ence between stems. This forces the optimizer to
discover:

• That bass energy triggers gain pumping across
all stems (so bass should be attenuated in the
sidechain)

• That transient-heavy stems (drums) cause the
most IMD (so drum gain should be reduced)

• That sustained harmonic content passes
through limiting cleanly (so it can be boosted)

• That reverb tails smear across the limiter’s time
constants (so reverb should be attenuated)

None of this information is provided to the opti-
mizer. It emerges from the IMD gradient alone.

1.2 Contributions

• An exact analytical Jacobian for a complete
audio limiter signal chain, including recursive
IIR smoothing—to our knowledge the first such
result for a production-grade limiter.

• The demonstration that IMD is the correct opti-
mization target for differentiable dynamics pro-
cessing, with empirical evidence that IMD min-
imization autonomously discovers frequency-
aware sidechain shaping.

• A two-phase staged optimization architecture
that separates dynamics fitting (threshold, ra-
tio, attack, release) from spectral balance op-
timization (per-stem gains), achieving 6.6 dB
better IMD than single-phase optimization.

• Analytical post-optimization makeup gain that
guarantees peak ceiling compliance without af-
fecting IMD measurement, cleanly separating
the nonlinear optimization from the linear out-
put constraint.

• A high-performance Rust implementation with
PyO3 Python bindings for PyTorch integra-
tion.

• Large-scale comparison against conventional
limiting on 255 matched track/target pairs:
80% win rate with 9.1 dB median improvement,
and 3× lower variance (6.9 dB vs. 19.8 dB),
demonstrating that stem-aware optimization
produces not just lower distortion but dramat-
ically more consistent results.

• Spectral analysis confirming clean limiting be-
havior: uniform gain reduction across the fre-
quency spectrum with no added harmonics or
coloration.

2 Related Work

Differentiable audio effects. DDSP [1] introduced
differentiable synthesis modules but focused on os-
cillators and filters rather than dynamics processing.
Steinmetz et al. [2] proposed differentiable audio
production style transfer using proxy neural net-
works. Colonel et al. [3] applied differentiable signal
processing to automatic audio production but used
surrogate models for nonlinear effects. None of these
works address differentiable limiting with analytical
gradients.

Differentiable dynamics processing. Wright et
al. [4] trained neural networks to emulate compres-
sor behavior but did not make the compressor itself
differentiable. Hawley et al. [5] used end-to-end
learning to match audio effect chains but treated
each effect as a black box. Our work computes exact
gradients through the actual limiter algorithm.

IIR filter gradients. Kuznetsov et al. [6] de-
rived gradients for biquad IIR filters. We extend
this to attack/release envelope followers with hold
time, curve shaping, and mode-dependent coeffi-
cient switching.

2

Automatic mixing and mastering. A decade of
research has addressed automated audio produc-
tion [12, 13], employing rule-based systems, ma-
chine learning, and optimization. Prior work has
used perceptual metrics (PEAQ [14]), spectral dis-
tance measures, loudness targets [15], or learned
embeddings as optimization targets [2]. Recent
differentiable approaches include hyperconditioned
biquads [17] and latent diffusion for accompani-
ment [16]. To our knowledge, no prior work has
identified IMD as the primary optimization target
for dynamics processing or demonstrated that IMD
minimization produces musically meaningful limiter
configurations.

3 System Architecture
PRISM processes S input audio stems xs ∈ RT

(s = 1, . . . , S) through two parallel paths sharing a
common gain envelope (Figure 1).

3.1 Signal Flow

Pre-gain. A learnable pre-gain gpre, parameterized
in log space as log gpre, scales all stems before lim-
iting:

x̃s[t] = gpre · xs[t], gpre = exp(log gpre) (1)

The log-space parameterization ensures positivity
and provides multiplicative learning dynamics. Pre-
gain is optimized in Phase 1 alongside dynamics
parameters, then frozen in Phase 2.

Sidechain path. A weighted sum of the original
input stems forms the sidechain signal:

c[t] =
S∑

s=1
gs · xs[t] (2)

where gs are differentiable per-stem mixing gains.
These gains control how much each stem contributes
to the limiter’s sidechain—effectively a learned,
content-adaptive sidechain filter.

Peak detection. A sliding-window maximum ex-
tracts the peak envelope:

p[t] = max
j∈[t,t+L)

|c[j]| (3)

where L is the lookahead window. We store
arg maxj for gradient routing.

True peak detection (optional). For ITU-R
BS.1770 compliance [7], we apply 4× oversampling
via windowed sinc interpolation before peak detec-
tion:

ĉ[4t + ϕ] =
K∑

k=−K

c[t + k] · wϕ[k + K] (4)

where wϕ are Hann-windowed sinc coefficients for
phase offset ϕ ∈ {0, 1, 2, 3} and K = 16 taps.

Gain reduction. A soft-knee compression curve
computes the target gain:

r[t] =



1 if p[t] ≤ τ

τ + δ[t]/ρ

p[t] if δ[t] > wk

τ + δ[t]
(
1− κ[t](1− 1/ρ)

)
p[t] otherwise

(5)
where δ[t] = p[t] − τ , τ is the threshold, ρ is the
compression ratio, wk = 0.05 is the knee width, and
κ[t] = δ[t]/wk.

Attack/release smoothing. A recursive IIR filter
smooths the gain envelope:

e[t] =



r[t] if t = 0

e[t− 1] if in hold phase

α · e[t− 1] + (1− α) · r[t] if attack

β · e[t− 1] + (1− β) · r[t] if release
(6)

where α = exp(−1/(fs · ta/1000))γa and β =
exp(−1/(fs · tr/1000))γr , with γa and γr as curve
shaping exponents. The hold phase activates when
a new peak exceeds the current envelope; the enve-
lope holds at the peak value for h samples (fixed
at h = 0.005 · fs, i.e., 5 ms) before release begins.
Attack mode triggers when r[t] < e[t − 1] (gain
reduction increasing); release mode triggers other-
wise.

Output. The limited output for each stem is:

ys[t] = x̃s[t] · e[t] · gmakeup (7)

where gmakeup is computed analytically post-
optimization (Section 5.3).

Gain envelope output. The limiter returns both
the processed audio ys[t] and the gain envelope e[t].

3

× gpre

Σ gsxs

Peak Detect

Soft-Knee

Attack/Release× e[t]

×gmk

xs[t]

ys[t]

log gpre

gs

τ, ρ

ta, tr

analytical

Si
de

ch
ai

n

A
ud

io

Figure 1: PRISM signal flow. Orange dashed lines
indicate differentiable parameters optimized via
backpropagation. The learnable pre-gain gpre scales
all stems before limiting and is optimized in Phase 1.
Makeup gain (red label) is computed analytically
post-optimization—it is not an optimized parame-
ter.

The envelope enables computation of the mean gain-
reduction activity:

r̄ = 1
T

T∑
t=1

(1− e[t]) (8)

which measures how much compression the limiter
applies on average. This is used in the GR activity
penalty (Section 5.4).

4 Analytical Jacobian Computa-
tion

The Jacobian J ∈ RS×T ×P captures:

Js,t,p = ∂ys[t]
∂θp

(9)

where θ = [log gpre, g1, . . . , gS , τ, ta, tr, ρ] is the op-
timized parameter vector.

4.1 Peak Detection Gradients

The gradient through the sliding-window maximum
is sparse. Let j∗ = arg maxj∈[t,t+L) |c[j]|:

∂p[t]
∂c[j] =

{
sgn(c[j∗]) if j = j∗

0 otherwise
(10)

For true peak mode, the gradient flows through
sinc interpolation:

∂p[t]
∂c[j] = sgn(ĉ[ĵ∗]) · wϕ∗ [j − ĵ∗/4 + K] (11)

4.2 Soft-Knee Gain Gradients

Let δ = p[t] − τ denote the amount by which the
peak exceeds threshold, and wk = 0.05 the knee
width.

For the knee region (0 < δ ≤ wk):

∂r[t]
∂τ

= 2δ(1− 1/ρ)
wk · p[t] ,

∂r[t]
∂ρ

= − δ2

wk · p[t] · ρ2

(12)
For the above-knee region (δ > wk):

∂r[t]
∂τ

= ρ− 1
ρ · p[t] ,

∂r[t]
∂ρ

= − δ

ρ2 · p[t] (13)

For p[t] ≤ τ (below threshold), r[t] = 1 and
all gradients are zero. The knee region gradients
approach zero as δ → 0, ensuring smooth gradient
behavior at the threshold boundary. Note that the
gain function is C0 but not C1 at δ = wk: the
threshold gradient evaluates to 2(ρ− 1)/(ρ · p) from
the knee side versus (ρ− 1)/(ρ · p) from the above-
knee side. This is a standard property of piecewise
soft-knee curves [8] and does not cause optimization
issues in practice, as wk = 0.05 limits the affected
region to a narrow band around threshold.

4.3 Recursive Envelope Gradients

The envelope e[t] is recursive—e[t] depends on e[t−
1]—so the gradient at time t depends on the entire
history. We compute exact gradients via forward
propagation of partial derivatives:

∂e[t]
∂θ

=



∂r[t]
∂θ t = 0

∂e[t−1]
∂θ hold

α∂e[t−1]
∂θ + (1− α)∂r[t]

∂θ attack

β ∂e[t−1]
∂θ + (1− β)∂r[t]

∂θ release

(14)

For attack time, the coefficient α itself depends
on ta:

∂e[t]
∂ta

= ∂α

∂ta

(
e[t− 1]− r[t]

)
+ α

∂e[t− 1]
∂ta

(15)

These recurrences are computed in O(T) per pa-
rameter, yielding total complexity O(S · T · P).

4

5 Two-Phase Staged Optimiza-
tion

5.1 Motivation: Parameter Hierarchy

Empirical observation of single-phase optimization
reveals a fundamental problem: when all param-
eters are optimized simultaneously, the optimizer
preferentially adjusts threshold because it has the
steepest gradient with respect to IMD. Threshold
drops from 0.50 to 0.19 while compression ratio
barely moves (4.0 to 4.28), because small threshold
changes produce larger IMD reductions than small
ratio changes.

This creates a suboptimal solution: the optimizer
exhausts its dynamics budget on threshold alone,
never learning to use ratio as a dynamics control
tool. Per-stem gains cluster tightly (1.15–1.37)
rather than differentiating between stems, because
gains absorb gradient that should flow to dynamics
parameters.

The root cause is that the optimizer treats all
parameters equally, but there is a natural hierarchy:

1. Dynamics parameters (threshold, ratio, attack,
release) determine whether the limiter controls
peaks adequately.

2. Per-stem gains determine how each stem inter-
acts with the limiter’s nonlinearity.

Gains are only useful once the dynamics are cor-
rect.

5.2 Architecture

Phase 1 accepts a configurable target mode
(–stage1-target {lufs,peak}). In LUFS mode,
the optimizer fits dynamics parameters until inte-
grated loudness is within tolerance of the target;
in peak mode, it targets the peak ceiling directly.
Both modes optimize the learnable pre-gain gpre
alongside dynamics parameters, allowing the opti-
mizer to set the overall input level before the limiter
engages.

Phase 1 forces the optimizer to establish correct
dynamics behavior with equal-gain stems. Without
gains to absorb gradient, the optimizer must actu-
ally engage threshold and ratio to control peaks.
Phase 2 then explores the per-stem gain space with
a stable dynamics foundation, finding the spectral
balance that minimizes IMD through the limiter.

Algorithm 1 Two-Phase Staged Optimization
1: Input: target mode m ∈ {lufs, peak}, toler-

ance ϵ
2:
3: Phase 1: Dynamics fitting with configurable

target
4: Freeze all per-stem gains at gs = 1.0
5: Optimize {log gpre, τ, ρ, ta, tr} to minimize L
6: if m = lufs then
7: Track |LUFS− Ltarget| < ϵ
8: else if m = peak then
9: Track |p̂− pceil| < ϵ

10: end if
11: Transition when target met or early stopping

triggers
12:
13: Phase 2: IMD refinement via gains
14: Lock dynamics parameters and gpre at Phase 1

values
15: Unfreeze per-stem gains gs

16: Optimize {g1, . . . , gS} to minimize LIMD
17: until convergence or early stopping
18:
19: Post-optimization: Analytical makeup gain
20: p̂← maxt |y[t]| ▷ peak of limited output
21: gmakeup ← 10pceil/20/p̂ ▷ guarantees ceiling

5.3 Analytical Makeup Gain

A critical architectural decision is that makeup gain
is not an optimized parameter. It is computed
analytically after optimization:

gmakeup = 10pceil/20

maxt |ypre-makeup[t]| (16)

This is correct because:
1. Makeup gain is a linear scaling applied after

the limiter’s nonlinear processing.
2. The IMD null measurement cancels any linear

gain, so makeup gain does not affect IMD.
3. The peak ceiling is guaranteed by construction

rather than by penalty.
Including makeup gain in the optimizer wastes

gradient budget and creates a tug-of-war: the opti-
mizer pushes makeup up to hit LUFS targets while
a peak penalty pushes it down. Removing it from
the optimization eliminates this conflict entirely.

5

5.4 Role of Penalty Terms

The loss function combines IMD with three penalty
terms that prevent degenerate solutions:

L = 1
S

S∑
s=1

IMDdB(xs, ys) + λL∥LUFS− Ltarget∥2

+ λP max(0, p̂− pceil)2 + λG max(0, ϵG − r̄)
(17)

The LUFS penalty prevents the trivial-minimum
pathology where the optimizer raises threshold to
1.0 (no limiting). Without any loudness constraint,
the gradient always points toward “less limiting
= less IMD.” The LUFS penalty steers the opti-
mizer toward solutions with appropriate compres-
sion depth, with a configurable tolerance below
which no penalty is applied.

The peak penalty tracks true peak ceiling hits and
penalizes overshoots. While the analytical makeup
gain guarantees final peak compliance, the peak
penalty during optimization steers dynamics param-
eters toward solutions that control peaks naturally
rather than relying entirely on post-hoc scaling.

The GR activity penalty prevents a second class
of degenerate solution: configurations where the
limiter is technically active but performs negligi-
ble gain reduction. By penalizing low mean gain-
reduction activity r̄, this term ensures the optimizer
finds solutions with meaningful compression rather
than parameter configurations that trivially avoid
distortion by avoiding compression.

The LUFS target need not be hit exactly. It is a
soft guide that keeps the optimizer in a useful region
of parameter space. The actual output loudness is
determined by the analytical makeup gain and the
dynamics parameters jointly.

6 Experiments
Note: Figures generated from the implementa-
tion use the codename “Hyraxiable”; this refers to
PRISM throughout.

6.1 Setup

We evaluate on an 8-stem commercial music mix
comprising:

1. Drums + Hats + Production

Table 1: Single-phase optimization results.

Metric Value
Best IMD −18.02 dB
Total iterations 47
Wall time 616 s
Threshold (final) 0.251
Ratio (final) 4.15
Makeup gain (analytical) 0.684 (−3.29 dB)
Peak ceiling −1.0 dBFS (guaranteed)

Gain range: 1.07–1.47 (poorly differentiated)

2. Bass
3. Guitar
4. Delay / Reverb
5. Harmonics
6. Main Vocals
7. Music (full instrumental submix)
8. Adlibs (vocal ad-libs)
Loss function: As defined in Equation 17, com-

bining IMD with LUFS, peak, and GR activity
penalties.

Configuration: Adam optimizer (η = 0.01), gradi-
ent clipping ∥∇∥2 ≤ 1.0, patience 10, target LUFS
= −14, peak ceiling = −1.0 dBFS. Gains bounded
[0.01, 3.0], threshold [0.1, 1.0], ratio [1, 20].

6.2 Single-Phase Baseline

With all parameters optimized simultaneously (the
approach described in prior versions of this work),
the optimizer converges to:

The per-stem gains cluster between 1.07 and
1.47—barely differentiated. The optimizer spent
its budget dragging threshold from 0.50 to 0.25
while ratio moved only from 4.0 to 4.15. The gains
acted as a second global gain knob rather than
performing meaningful per-stem optimization.

6.3 Two-Phase Staged Optimization

The staged optimization produces dramatically dif-
ferent and musically meaningful gain configurations:

Three stems muted (gain = 0.01, the parameter
floor):

• Bass: Low-frequency energy causes gain pump-
ing across all other stems. Removing bass from
the sidechain is the multiband equivalent of

6

Table 2: Two-phase staged optimization results.

Metric Value
Best IMD −24.64 dB
Improvement over single-phase +6.62 dB
Phase 1 iterations (dynamics) 10
Phase 2 iterations (gains) 37
Total iterations 47
Wall time 627 s
Threshold (final) 0.203
Ratio (final) 4.21
Makeup gain (analytical) 0.756 (−2.43 dB)
Peak ceiling −1.0 dBFS (guaranteed)

Table 3: Per-stem gains reveal musically meaningful
sidechain shaping. The optimizer autonomously
discovered that bass, delay/reverb, and adlibs cause
the most IMD and should be removed from the
sidechain.

Stem Single-Phase Staged
1 Drums + Hats 1.27 0.61
2 Bass 1.15 0.01 (floor)
3 Guitar 1.37 1.27
4 Delay / Reverb 1.35 0.01 (floor)
5 Harmonics 1.37 3.00 (ceiling)
6 Main Vocals 1.34 1.20
7 Music 1.37 2.35
8 Adlibs 1.33 0.01 (floor)

high-pass sidechain filtering—a technique mas-
tering engineers use routinely.

• Delay/Reverb: Reverb tails smear across the
limiter’s attack/release time constants, causing
sustained intermodulation.

• Adlibs: Transient, sibilant vocal material that
triggers high-frequency distortion.

Drums attenuated (0.61): The stem with the high-
est transient energy is reduced but not eliminated,
balancing transient control against preserving the
rhythmic foundation.

Harmonics maximized (3.00, the parameter ceil-
ing): Sustained harmonic content passes through
limiting with minimal IMD. The optimizer discov-
ered that this stem can be boosted to maximum
without increasing distortion.

Main vocals preserved (1.20): The focal musical

20 40 60 80 100
Early Stop Iteration

0

10

20

30

40

50

N
um

be
r o

f T
ra

ck
s

Convergence Speed
Median: 33 iterations

20 40 60 80 100 120
Total Iterations

0

5

10

15

20

25

N
um

be
r o

f T
ra

ck
s

Total Optimization Iterations
Median: 47 iterations

Figure 2: Convergence behavior across the dataset.
Most tracks converge within 40–60 iterations, with
early stopping typically triggering 10–20 iterations
before the maximum.

element is kept near unity—the optimizer learned
not to attenuate the most important content.

6.4 Optimization Dynamics

Phase 1 converges in just 10 iterations, establishing
dynamics parameters (threshold = 0.203, ratio =
4.21) that adequately control peaks. With gains
frozen at unity, the optimizer is forced to engage
both threshold and ratio.

Phase 2 begins at −16.0 dB IMD (with gains
at unity) and immediately improves as gains be-
gin differentiating. By iteration 3 it surpasses the
single-phase best. The sustained improvement from
iterations 14–24 corresponds to gains reaching their
extreme values (bass/reverb/adlibs hitting the floor,
harmonics hitting the ceiling). Early stopping trig-
gers at iteration 36 after 10 iterations without im-
provement.

Phase 1 takes 10 iterations; Phase 2 takes 37.
The dynamics problem is small (4 parameters) and
converges quickly. The gain optimization problem
is large (8 parameters, wide bounds) and benefits
from the full remaining iteration budget.

6.5 Why Single-Phase Fails

In single-phase optimization, we observe:
• Threshold gradient dominates (∼0.97) because

threshold has the steepest effect on IMD.
• Ratio gradient is negligible (∼0.03), so ratio

barely moves (4.0 → 4.15 over 47 iterations).
• Gains cluster tightly because they share gradi-

ent with threshold—small gain adjustments are
dominated by threshold’s larger contribution.

7

Table 4: Processing time for 8 stems × 44,100
samples on Intel Xeon E5-1650 v3 @ 3.50GHz.

Operation Time
Forward pass only 0.8 ms
Forward + Jacobian 3.2 ms
Jacobian overhead 2.4 ms (3×)

Jacobian size 8× 44100× 13
= 4.6M floats (18 MB)

• The optimizer converges before gains have time
to differentiate.

Staged optimization resolves this by giving dy-
namics and gains separate gradient budgets.

6.6 Computational Performance

Full optimization (47 iterations, both phases) com-
pletes in 627 seconds, dominated by IMD measure-
ment (∼13 s per iteration) rather than limiter/Ja-
cobian computation.

6.7 Large-Scale Evaluation on
MUSDB18-HQ

To validate beyond a single mix, we evaluate on the
MUSDB18-HQ dataset [11]: 300 tracks spanning
diverse genres, each with four stems (vocals, drums,
bass, other) plus a mixture, in uncompressed WAV
format at 44.1 kHz. After filtering tracks where the
optimizer applied near-unity gain (threshold ≥ 0.99,
indicating insufficient limiting activity to produce
meaningful IMD reduction), 255 tracks remain for
analysis.

Targets. We optimize each track for two deliv-
ery specifications: −14 LUFS / −1 dBTP (Spotify
normalization) and −16 LUFS / −1 dBTP (Apple
Music normalization).

Baseline. We compare against dpl, a high-quality
true-peak limiter using ITU-R BS.1770 true peak
measurement [7]. This represents the conventional
approach: a single-stage limiter operating on the
finished stereo mix with no access to stem informa-
tion.

Metrics. For each track we measure: integrated
LUFS (target compliance), true peak dBTP (ceil-
ing compliance), loudness range (LRA), dynamic
range, IMD, processing time, and delta artifact

level (difference in artifact energy between input
and output).

Results. After filtering 45 tracks with near-unity
threshold (indicating insufficient limiting activity),
255 valid PRISM results remain, all with matched
dpl outputs for direct comparison (Section 6.8).

Spectral analysis across all tracks confirms that
the optimizer achieves clean limiting behavior: the
frequency spectrum of the output matches the input
spectrum scaled by a uniform gain factor, with
no evidence of added harmonics, intermodulation
products, or spectral coloration. This validates the
core claim that IMD minimization produces limiting
without audible artifacts.

The optimizer autonomously discovers content-
adaptive sidechain configurations across genres,
with bass and reverb-heavy tracks showing the most
aggressive gain differentiation between stems.

6.8 Comparison with Conventional Lim-
iting

To quantify the advantage of stem-aware optimiza-
tion, we compare PRISM against dpl, a high-
quality conventional true-peak limiter using ITU-R
BS.1770 true peak measurement. For each track in
MUSDB18-HQ, both systems target identical loud-
ness specifications (−14 or −16 LUFS, −1 dBTP
ceiling). This comparison is structurally asymmet-
ric: dpl receives the stereo mixdown and applies
uniform gain reduction, while PRISM receives in-
dividual stems and optimizes per-stem sidechain
contributions. The question is whether stem access
translates to measurably lower distortion.

Results across 255 matched track/target pairs
reveal two findings (Figure 3, Table 5):

Quality: PRISM achieves lower IMD on 80%
of tracks, with a median improvement of 9.1 dB.
The median IMD for PRISM is −28.9 dB versus
−19.0 dB for dpl—a substantial difference given
that professional mastering typically targets IMD
below −40 dB for transparent limiting.

Consistency: PRISM’s IMD standard deviation
is 6.9 dB versus 19.8 dB for dpl. This 3× reduction
in variance is the more significant finding. Conven-
tional limiting is unpredictable: some tracks limit
cleanly, others produce severe artifacts, depending
on spectral content the limiter cannot adapt to.
Stem-aware optimization finds reliable parameters

8

100 80 60 40 20
dpl IMD (dB)

100

80

60

40

20

H
yr

ax
ia

bl
e

IM
D

 (d
B)

Hyraxiable better: 80%
Median improvement: 9.1 dB

IMD Comparison: Stem-Aware vs Conventional Limiting

Equal IMD
Hyraxiable better

Figure 3: IMD comparison across 255 matched
track/target pairs. Each point represents the same
track processed to the same loudness target. Points
below the diagonal indicate PRISM achieves lower
IMD. PRISM wins on 80% of tracks with median
9.1 dB improvement.

regardless of input characteristics.
The histogram (Figure 4) visualizes this consis-

tency gap. PRISM produces a tight cluster around
−29 dB—the optimizer reliably converges to similar
IMD regardless of genre, tempo, or spectral density.
dpl’s bimodal distribution reveals its fundamental
limitation: it performs well on some material (clus-
ter near −70 dB, where limiting is minimal) but
poorly on most (cluster near −18 dB, in the audible
distortion range).

The 20% of tracks where dpl achieves lower IMD
share a common characteristic: minimal limiting ac-
tivity. When the source material is already near the
target loudness, dpl applies negligible gain reduction
and thus introduces negligible distortion. PRISM,
constrained to actively optimize, may find a local
minimum with slightly higher IMD. This limitation
could be addressed by adding a “passthrough de-
tection” phase that skips optimization when source
loudness is within tolerance of the target.

We note a limitation of this benchmark:
MUSDB18-HQ provides only four stem groups (vo-
cals, drums, bass, other), whereas production mixes

100 80 60 40 20 0
IMD (dB)

0

10

20

30

40

50

60

N
um

be
r o

f T
ra

ck
s

9.1 dB less distortion

IMD Distribution: Stem-Aware vs Conventional Limiting
dpl (median: -19.0 dB)
Hyraxiable (median: -28.9 dB)

Figure 4: IMD distribution comparison. PRISM (or-
ange) shows a tight, unimodal distribution centered
at −29 dB. dpl (blue) shows a bimodal distribution
spanning −70 to −10 dB, reflecting inconsistent per-
formance across source material.

40 20 0 20 40 60 80
IMD Improvement (dB) Positive = Hyraxiable Better

0

10

20

30

40

50
N

um
be

r o
f T

ra
ck

s
Hyraxiable better on 80% of tracks

Per-Track IMD Improvement: Hyraxiable vs dpl
Equal
Median: 9.1 dB

Figure 5: Per-track IMD improvement (dpl IMD mi-
nus PRISM IMD). Positive values indicate PRISM
achieves lower distortion. The distribution is heav-
ily right-skewed: PRISM’s wins are larger than its
losses.

commonly contain 8–64+ individual stems. The
“other” category collapses guitars, keyboards, syn-
thesizers, and effects into a single stem, limiting the
optimizer’s ability to make fine-grained sidechain
decisions. The 8-stem case study in Section 6.3
better represents real-world stem counts.

6.9 Delta Signal Analysis

To characterize the limiter’s behavior, we analyze
the delta signal δ[t] = x[t] − y[t]: the difference
between original and limited audio. This reveals
exactly what the limiter removes from the signal.

Across 137 tracks, we compute the ratio of delta
energy to original energy for both RMS and peak

9

Table 5: IMD comparison: stem-aware vs. conven-
tional limiting on 255 matched tracks.

Method Mean Median Std
dpl (conventional) −26.9 dB −19.0 dB 19.7 dB
PRISM (stem-aware) −29.6 dB −28.9 dB 6.9 dB

Improvement +2.7 dB +9.1 dB —
PRISM win rate 80% (205/255 tracks)

0.2 0.4 0.6 0.8
Learned Threshold (linear)

0

5

10

15

20

25

30

N
um

be
r o

f T
ra

ck
s

Optimized Threshold Distribution
Median: 0.355

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Makeup Gain (linear)

0

5

10

15

20

25

N
um

be
r o

f T
ra

ck
s

Optimized Makeup Gain Distribution
Median: 0.606

Figure 6: Distribution of learned parameters across
255 tracks. Threshold clusters around 0.35, indicat-
ing consistent limiting depth across diverse content.

measurements (Figure 8). The median RMS ratio
is 9.2%—the limiter removes less than 10% of the
signal’s total energy. However, the median peak
ratio is 15.6%, yielding a peak/RMS ratio of 1.7×.
This disparity confirms transient-focused limiting:
peaks are attenuated more than sustained content.

Spectral analysis of the delta signal provides fur-
ther evidence of clean limiting (Figure 9). The
delta/original ratio is flat at approximately −20 dB
from 20 Hz to 20 kHz. Uniform gain reduction
across the frequency spectrum means no spectral
coloration: the limiter removes a scaled copy of the
input rather than selectively attenuating specific
frequency bands.

Time-frequency analysis via spectrograms (Fig-
ure 10) shows that the delta signal’s spectral struc-
ture mirrors the original. The limiter removes con-
tent proportionally across all frequencies at each
time instant, rather than introducing artifacts or se-
lectively suppressing specific spectral regions. The
waveform comparison confirms that delta energy
concentrates at transient peaks, with minimal ac-
tivity during sustained passages.

10
2

10
3

10
4

Frequency (Hz)

100

90

80

70

60

50

40

M
ag

ni
tu

de
 (d

B)

Frequency Spectrum Comparison

Original
Limited

10
2

10
3

10
4

Frequency (Hz)

4

2

0

2

4

M
ag

ni
tu

de
 C

ha
ng

e
(d

B)

Spectral Difference (Limited - Original)

Added
Removed

Harmonic Analysis: Actions_-_One_Minute_Smile

Figure 7: Harmonic analysis for a representative
track. The output spectrum matches the input
spectrum shape, confirming uniform gain reduction
without added harmonics or spectral coloration.

0.1 0.2 0.3 0.4 0.5
Delta RMS / Original RMS

0

5

10

15

20

25

Co
un

t
Delta RMS / Original RMS

Median: 0.092

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Delta Peak / Original Peak

0

5

10

15

20

Co
un

t

Delta Peak / Original Peak
Median: 0.156

Delta Statistics Across All Tracks

Figure 8: Delta statistics across 137 tracks. Left:
RMS ratio (median 9.2%). Right: Peak ratio (me-
dian 15.6%). The 1.7× ratio between peak and
RMS removal confirms transient-focused limiting
behavior.

7 Practical Workflow Integration

Beyond its technical contributions, PRISM repre-
sents a structural change in the mastering workflow.
We analyze the practical implications of stem-aware
optimization integrated directly into the mixing ses-
sion.

7.1 Elimination of the Mastering Hand-
off

Traditional mastering requires the mix engineer to
export a stereo print and deliver it to a mastering
engineer—a process that introduces days to weeks
of latency and costs $200–2,000+ per song. Even
“stem mastering,” which provides the mastering en-
gineer with submixes, still operates on rendered

10

102 103 104

Frequency (Hz)

100

90

80

70

60

50

40

M
ag

ni
tu

de
 (d

B)

Power Spectral Density
Original
Delta

102 103 104

Frequency (Hz)

60

50

40

30

20

10

0

10

De
lta

/O
rig

in
al

 R
at

io
 (d

B)

Delta/Original Ratio by Frequency

Delta Spectrum: Actions_-_One_Minute_Smile

Figure 9: Delta spectrum analysis. Top: Orig-
inal and delta power spectral density. Bottom:
Delta/original ratio is flat at −20 dB across 20 Hz–
20 kHz, confirming uniform gain reduction with no
frequency-selective behavior.

audio files rather than the live session. PRISM
eliminates this handoff: the mix engineer runs opti-
mization as the final step before export, while stems
remain open in the session.

7.2 Closed Creative Feedback Loop

In conventional workflows, the mastering engineer
works on prints that are disconnected from the
mix session. If a mastering decision reveals a mix
problem (e.g., excessive low-mid buildup), the feed-
back path requires a new print, re-delivery, and re-
mastering. With stem-aware optimization, chang-
ing a plugin setting in the mix—adjusting an EQ
curve, modifying a reverb send—and directly hear-
ing the effect on the final master becomes possible
for the first time. This closes a feedback loop that
has been structurally broken since the emergence
of mastering as a separate discipline.

7.3 Information Preservation

A mastering engineer working with a stereo bounce
has irreversibly lost the ability to make per-stem
decisions. The bass and kick are a single wave-
form; the vocal and its reverb are fused. Even stem
mastering loses the live relationship between stems
and the mix bus—the stems are snapshots, not
the session itself. PRISM operates at the point of
maximum information: inside the mix session with
access to every stem, every parameter, and every

0 1.5 3 4.5 6 7.5 9
Time

0
64

128
256
512

1024
2048
4096
8192

16384

Fr
eq

ue
nc

y
(H

z)

Original Signal

0 1.5 3 4.5 6 7.5 9
Time

0
64

128
256
512

1024
2048
4096
8192

16384

Fr
eq

ue
nc

y
(H

z)

Delta Signal

0 2 4 6 8 10
Time (s)

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Am
pl

itu
de

Waveform Comparison

Original
Delta

Delta Analysis: Nerve_9_-_Pray_For_The_Rain

Figure 10: Delta spectrogram analysis. Top: Orig-
inal signal. Middle: Delta signal (same spectral
structure, lower magnitude). Bottom: Waveform
comparison showing delta (red) concentrated at
transient peaks.

routing decision.

7.4 Perceptual Delivery Accuracy

A systematic perception gap exists in current mas-
tering practice. Engineers master while monitoring
PCM audio at sample-peak levels, but consumers
hear a version normalized to −14 LUFS (Spotify)
or −16 LUFS (Apple Music) with −1 dBTP true
peak limiting applied by the platform. The engineer
never hears what the listener hears. By mastering
to the delivery specification—optimizing directly
for the target LUFS and true peak ceiling—PRISM
closes this gap. The engineer monitors the actual
delivery-format output during the optimization.

7.5 Cost, Reproducibility, and Access

Mastering is the most expensive per-minute step
in music production. Automated stem-aware opti-
mization democratizes broadcast-quality, platform-
compliant output for independent artists who can-
not afford professional mastering. Furthermore,
the optimization is deterministic: identical stems,
targets, and hyperparameters produce identical re-
sults. This reproducibility is impossible with human
mastering, where session-to-session variation is in-
herent.

11

8 Discussion

8.1 Consistency as the Primary Contri-
bution

The comparison with conventional limiting reveals
that consistency—not raw quality—is the primary
practical contribution. An 80% win rate and 9.1 dB
median improvement are significant, but engineers
have always accepted that limiting introduces some
distortion. What they cannot accept is unpre-
dictability: the same limiter settings producing
transparent results on one track and audible pump-
ing on another.

Conventional limiters exhibit this unpredictabil-
ity because they operate on the finished mix with
no information about spectral content. A kick drum
and a bass note summed together look like a single
waveform; the limiter cannot know that attenuat-
ing the bass would reduce intermodulation while
attenuating the kick would destroy the transient
feel. It applies uniform gain reduction and hopes
the spectral content happens to limit cleanly.

PRISM eliminates this unpredictability by op-
timizing per-stem contributions to the sidechain.
The optimizer learns from IMD which stems cause
spectral interference through the nonlinearity—and
this learning generalizes across genres because IMD
measures the same physical phenomenon regardless
of musical content. A track with heavy bass learns
to attenuate bass; a track with aggressive drums
learns to attenuate drums; both converge to similar
final IMD because the optimizer found the config-
uration that minimizes distortion for that specific
spectral content.

The 3× reduction in variance (6.9 dB vs. 19.8 dB)
is thus not a statistical accident but a structural
consequence of stem access plus gradient-based op-
timization.

8.2 IMD as the Universal Metric

Our second claim is that IMD is the correct
optimization target for differentiable dynamics
processing—not loudness, not peak level, not a
perceptual metric. The evidence is empirical: an
optimizer given only the IMD scalar and the gradi-
ent through the limiter autonomously discovers:

1. Sidechain high-pass filtering (bass removal)

2. Transient energy management (drum attenua-
tion)

3. Reverb tail suppression
4. Harmonic preservation
5. Vocal protection
These are the core principles of professional mas-

tering, derived entirely from a single scalar met-
ric. The optimizer does not know what “bass” or
“drums” or “vocals” are. It only knows which stems
cause spectral interference through the limiter’s
nonlinearity.

This suggests that IMD may serve as a universal
quality metric for any nonlinear audio process—not
just limiting. Equalization, saturation, multiband
compression, and excitation all introduce nonlinear
distortion that IMD can quantify. The same opti-
mization framework could, in principle, tune any
differentiable audio effect chain.

8.3 Separation of Concerns

The architecture cleanly separates three concerns:
1. Nonlinear optimization (Phase 1 + 2): Mini-

mize IMD through the limiter. This is the hard
problem that requires gradients.

2. Linear output scaling (analytical makeup):
Guarantee peak ceiling. This is a closed-form
computation.

3. Loudness targeting (LUFS penalty): Steer the
optimizer away from degenerate solutions. This
is a soft constraint.

Previous versions of this work included makeup
gain as an optimized parameter, which conflated
concerns (1) and (2) and caused the optimizer to
fight itself. The clean separation yields both better
results and simpler architecture.

8.4 The Trivial Minimum and Its Reso-
lution

Without a LUFS penalty, IMD minimization has a
trivial global minimum at “no limiting” (threshold
= 1.0). This is not a bug—it is a correct observa-
tion about the optimization landscape. The LUFS
penalty resolves it by requiring the optimizer to
maintain active compression, but the penalty weight
λL must be tuned: too low and the optimizer es-
capes to trivial solutions; too high and it dominates
the loss, effectively optimizing for loudness rather
than quality.

12

In our experiments, λL = 1.0 with target LUFS
= −14 provided sufficient guidance without domi-
nating the IMD objective. The specific LUFS target
does not need to be achieved exactly—it serves as
a region constraint rather than a precision target.

8.5 Limitations

• The Jacobian is computed as a dense tensor.
For long audio (T ≫ 105), memory is a bottle-
neck.

• The phase transition between Phase 1 and
Phase 2 is currently triggered by early stop-
ping. Adaptive phase-switching (e.g., based on
gradient norm ratios) may yield better budget
allocation.

• The gain parameter bounds ([0.01, 3.0]) were
hand-chosen. Learning appropriate bounds per
stem is future work.

• The MUSDB18-HQ benchmark provides only
4 stem groups (vocals, drums, bass, other),
whereas real-world production mixes may con-
tain 8–64+ individual stems with far greater
spectral diversity. The optimizer’s ability
to exploit fine-grained stem information—
demonstrated in the 8-stem case study—is un-
derrepresented in the 4-stem evaluation.

• The LUFS penalty weight λL requires manual
tuning.

• On 45 of 300 benchmark results (15%), the
optimizer converged to threshold ≥ 0.99, ef-
fectively disabling limiting entirely. These
tracks escaped to the trivial IMD minimum by
avoiding compression rather than optimizing it.
We exclude these results from reported statis-
tics, but their existence indicates the LUFS
penalty does not always prevent degenerate
solutions. Stronger constraints or adaptive
penalty scheduling may be required for certain
source material.

9 Conclusion

We have presented PRISM, a fully differentiable
audio limiter with exact analytical Jacobians, and
demonstrated that intermodulation distortion is
the correct optimization target for differentiable dy-
namics processing. An optimizer minimizing IMD
autonomously discovers the engineering principles

of professional mastering—sidechain filtering, tran-
sient management, harmonic preservation—without
any audio content information.

The comparison with conventional limiting re-
veals the practical contribution: not just lower dis-
tortion (80% win rate, 9.1 dB median improvement),
but dramatically higher consistency. PRISM’s IMD
varies by 6.9 dB across diverse source material; con-
ventional limiting varies by 19.8 dB. This 3× re-
duction in variance means predictable results. A
mix engineer using PRISM knows what to expect;
an engineer using conventional limiting is gambling
on whether the source material happens to limit
cleanly.

This consistency emerges from stem access. A
conventional limiter sees a stereo waveform and
must apply uniform gain reduction regardless of
spectral content. PRISM sees individual stems and
learns which ones cause intermodulation through
the limiter’s nonlinearity. Bass energy triggers gain
pumping; the optimizer learns to attenuate bass in
the sidechain. Transients cause the most distortion;
the optimizer learns to reduce drum contribution.
This adaptation is automatic—the optimizer discov-
ers it from the IMD gradient alone—and it general-
izes across genres because IMD measures the same
physical phenomenon regardless of musical content.

The broader result: for any differentiable non-
linear audio process, the distortion introduced by
the nonlinearity—not the output characteristics—is
the metric that makes gradient-based optimization
discover musically meaningful parameter configura-
tions. The code is the side effect; the metric is the
contribution.

The system is open-source at https://github.
com/agrathwohl/hyraxiable.

Acknowledgments

The author thanks the open-source Rust and PyO3
communities. This work was conducted indepen-
dently without institutional funding.

References

[1] J. Engel, L. Hantrakul, C. Gu, and A. Roberts,
“DDSP: Differentiable Digital Signal Process-
ing,” in Proc. ICLR, 2020.

13

https://github.com/agrathwohl/hyraxiable
https://github.com/agrathwohl/hyraxiable

[2] C. J. Steinmetz, N. J. Bryan, and J. D. Reiss,
“Style transfer of audio effects with differen-
tiable signal processing,” J. Audio Eng. Soc.,
vol. 70, no. 9, pp. 708–721, 2022.

[3] J. Colonel, C. Steinmetz, M. Michelen-
Strominger, and B. Pardo, “Direct design of bi-
quad filter cascades with deep learning by sam-
pling random audio effects,” in Proc. ICASSP,
2022.

[4] A. Wright, E.-P. Damskägg, L. Juvela, and
V. Välimäki, “Real-time guitar amplifier em-
ulation with deep learning,” Applied Sciences,
vol. 10, no. 3, 2020.

[5] S. H. Hawley, B. Colburn, and S. Mimilakis,
“SignalTrain: Profiling audio compressors with
deep neural networks,” in Proc. AES Conv.,
2019.

[6] B. Kuznetsov, J. D. Parker, and F. Esqueda,
“Differentiable IIR filters for machine learning
applications,” in Proc. DAFx, 2020.

[7] ITU-R, “BS.1770-5: Algorithms to measure
audio programme loudness and true-peak audio
level,” International Telecommunication Union,
2020.

[8] D. Giannoulis, M. Massberg, and J. D. Reiss,
“Digital dynamic range compressor design—a
tutorial and analysis,” J. Audio Eng. Soc.,
vol. 60, no. 6, pp. 399–408, 2012.

[9] European Broadcasting Union, “EBU R128:
Loudness normalisation and permitted maxi-
mum level of audio signals,” EBU Technical
Recommendation, 2020.

[10] D. P. Kingma and J. Ba, “Adam: A method
for stochastic optimization,” in Proc. ICLR,
2015.

[11] Z. Rafii, A. Liutkus, F.-R. Stöter, S. I. Mim-
ilakis, and R. Bittner, “MUSDB18-HQ—an
uncompressed version of MUSDB18,” 2019.
[Online]. Available: https://zenodo.org/
record/3338373

[12] B. De Man, J. D. Reiss, and R. Stables, “Ten
years of automatic mixing,” in Proc. 3rd Work-
shop on Intelligent Music Production, 2017.

[13] D. Moffat and M. B. Sandler, “Approaches
in intelligent music production,” Arts, vol. 8,
no. 4, 2019.

[14] ITU-R, “BS.1387-1: Method for objective mea-
surements of perceived audio quality,” Interna-
tional Telecommunication Union, 1998.

[15] C. J. Steinmetz and J. D. Reiss, “pyloudnorm:
A simple yet flexible loudness meter in Python,”
in Proc. AES Conv., 2021.

[16] M. Comunità, C. Steinmetz, and J. D. Reiss,
“Diff-A-Riff: Musical accompaniment co-
creation via latent diffusion models,” in Proc.
ISMIR, 2023.

[17] S. Nercessian, A. Sarroff, and K. Werner,
“Lightweight and interpretable neural model-
ing of an audio distortion effect using hyper-
conditioned differentiable biquads,” in Proc.
ICASSP, 2021.

14

https://zenodo.org/record/3338373
https://zenodo.org/record/3338373

	Introduction
	Why Output Metrics Fail
	Contributions

	Related Work
	System Architecture
	Signal Flow

	Analytical Jacobian Computation
	Peak Detection Gradients
	Soft-Knee Gain Gradients
	Recursive Envelope Gradients

	Two-Phase Staged Optimization
	Motivation: Parameter Hierarchy
	Architecture
	Analytical Makeup Gain
	Role of Penalty Terms

	Experiments
	Setup
	Single-Phase Baseline
	Two-Phase Staged Optimization
	Optimization Dynamics
	Why Single-Phase Fails
	Computational Performance
	Large-Scale Evaluation on MUSDB18-HQ
	Comparison with Conventional Limiting
	Delta Signal Analysis

	Practical Workflow Integration
	Elimination of the Mastering Handoff
	Closed Creative Feedback Loop
	Information Preservation
	Perceptual Delivery Accuracy
	Cost, Reproducibility, and Access

	Discussion
	Consistency as the Primary Contribution
	IMD as the Universal Metric
	Separation of Concerns
	The Trivial Minimum and Its Resolution
	Limitations

	Conclusion

